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Abstract. We review the electroweak charged and neutral currents in the non-commutative standard model
(NCSM) and compute the Higgs and Yukawa parts of the NCSM action. With the aim to make the NCSM
accessible to phenomenological considerations, all relevant expressions are given in terms of physical fields,
and Feynman rules are provided.

1 Introduction

The approach to non-commutative field theory based on
star products and Seiberg–Witten (SW) maps allows for
the generalization of the standard model (SM) of particle
physics to the case of non-commutative space-time, keep-
ing the original gauge group and particle content [1–8]. It
provides a systematic way to compute Lorentz violating
operators that could be a signature of a (hypothetical)
non-commutative space-time structure [9–20].

In this article we carefully discuss the electroweak
charged and neutral currents in the non-commutative
standard model (NCSM) [6] and compute the Higgs and
Yukawa parts of the NCSM action. Among the features
which are novel in comparison with the SM is the ap-
pearance of additional gauge boson interaction terms and
of interaction terms without Higgs boson which include
additional mass dependent contributions. All relevant ex-
pressions are given in terms of physical fields, and se-
lected Feynman rules are provided with the aim to make
the model more accessible to phenomenological consider-
ations.

In the star product formulation of non-commutative
field theory, one retains the ordinary functions (and
fields) on Minkowski space, but introduces a new
non-commutative product which encodes the non-
commutative structure of space-time. For a constant anti-
symmetric matrix θµν , the relevant product is the Moyal–
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Weyl star product

f ∗ g =
∞∑
n=0

θµ1ν1 · · · θµnνn

(−2i)nn!
(∂µ1 . . . ∂µnf) (∂ν1 . . . ∂νng) .

(1)
For coordinates: xµ ∗ xν − xν ∗ xµ = iθµν . More generally,
a star product has the form

(f ∗ g)(x) = f(x)g(x) +
i
2
θµν(x)∂µf(x) ∂νg(x) + O(θ2) ,

(2)
where the Poisson tensor θµν(x) may be x-dependent and
satisfies the Jacobi identity. Higher-order terms in the star
product are chosen in such a way that the overall star
product is associative. In general, they involve derivatives
of θ. For a discussion of the Seiberg–Witten approach to
non-commutative field theory in the case of the space-time
dependent θµν(x), see, for example, [21–25].

Carefully studying non-commutative gauge transfor-
mations one finds that in general, non-commutative gauge
fields are valued in the enveloping algebra of the gauge
group [3,4]. (Only for U(N) in the fundamental represen-
tation it is possible to stick to Lie-algebra valued gauge
fields.) A priori this would imply an infinite number of
degrees of freedom if all coefficient functions of the mono-
mials that form an infinite basis of the enveloping algebra
were independent. That is the place where the second im-
portant ingredient of gauge theory on non-commutative
spaces comes into play: Seiberg–Witten maps [2,3] which
relate non-commutative gauge fields and ordinary fields
in commutative theory via a power series expansion in θ.
Since higher-order terms are now expressed in terms of the
zeroth-order fields, we do have the same number of degrees
of freedom as in the commutative case. Non-commutative
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fermion and gauge fields read

ψ̂ = ψ̂[V ] (3)

= ψ − 1
2
θαβVα∂βψ +

i
8
θαβ [Vα, Vβ ]ψ + O(θ2),

V̂µ = V̂µ[V ]

= Vµ +
1
4
θαβ{∂αVµ + Fαµ, Vβ} + O(θ2) , (4)

where ψ and Vµ are ordinary fermion and gauge fields,
respectively. Non-commutative fields throughout this pa-
per are denoted by a hat. The Seiberg–Witten maps are
not unique. The free parameters are chosen such that
the non-commutative gauge fields are hermitian and the
action is real. Still, there is some remaining freedom
including the freedom of the classical field redefinition
and the non-commutative gauge transformation. The non-
commutative actions considered here are covariant under
(global) Poincaré transformations provided that the Pois-
son tensor θ is transformed as well. With respect to a
fixed θ-background, however, the classical Lorentz sym-
metry is broken. What remains is a twisted Poincaré sym-
metry [26], which can in principle be extended to SW ex-
pansions.

In [6], it was shown how to construct a model with
non-commutative gauge invariance, which stays as close as
possible to the regular standard model. The distinguish-
ing feature of this minimal NCSM (mNCSM) is the ab-
sence of new triple neutral gauge boson interactions in the
gauge sector. However, as shown here, triple Z coupling
does appear from the Higgs action. Triple gauge boson
interactions do quite naturally arise in the gauge sector
of extended versions [6, 9, 10, 15] of the NCSM and have
been discussed in [9,10]. They also occur in an alternative
approach to the non-commutative standard model given
in [27, 28]. Another interesting novel feature of NCSM,
introduced by Seiberg–Witten (SW) maps , is the appear-
ance of mixing of the strong and electroweak interactions
already at the tree level [6, 9, 29].

We consider the θ-expanded NCSM action up to
first order in the non-commutativity parameter, which is
anomaly free [19], with an emphasis made on the elec-
troweak interactions only. In Sect. 2, we give an introduc-
tory overview of the NCSM. In Sect. 3, we discuss different
choices for representations of the gauge group which then
yield minimal and non-minimal versions of the NCSM. In
Sect. 4, we carefully discuss electroweak charged and neu-
tral currents of the NCSM. Explicit expressions for the
NCSM corrections in the Higgs and Yukawa sectors are
worked out in Sect. 5. These expressions can be used di-
rectly for further studies. The Feynman rules for the se-
lected three- and four-field electroweak vertices are given
in Sect. 6.

2 Non-commutative standard model

The action of the NCSM formally resembles the action
of the classical SM: the usual point-wise products in the

Lagrangian are replaced by the Moyal–Weyl product and
(matter and gauge) fields are replaced by the appropriate
Seiberg–Witten expansions. In the limit of vanishing non-
commutativity one recovers the usual commutative theory.
This limit is assumed to be continuous. If the transition is
not continuous (compare, e.g. [16]), perturbative aspects
of the theory under consideration can still be addressed.
Problems with unitarity may occur in the non-expanded
theory with non-trivial time-space commutation relations.
These problems can be overcome by a careful analysis of
perturbation theory in a Hamiltonian approach, cf. [20,30]
for scalar field theory. Other problems in non-commutative
theories that are encountered already at the classical level
are charge quantization in non-commutative QED, the
definition of the tensor product of gauge fields, gauge in-
variance of the Yukawa couplings and ambiguities in the
kinetic part of the action for gauge fields. As demonstrated
in [6], all these problems can be overcome and do not af-
fect the NCSM presented here. The action of the NCSM
is

SNCSM = Sfermions + Sgauge + SHiggs + SYukawa , (5)

where

Sfermions

=
∫

d4x

3∑
i=1

(
L̂

(i)

L ∗
(
î�DL̂(i)

L

)
+ Q̂

(i)

L ∗
(
î�D Q̂

(i)
L

)
+ê

(i)
R ∗

(
î�D ê

(i)
R

)
+ û

(i)
R ∗

(
î�D û

(i)
R

)
+ d̂

(i)

R ∗
(
î�D d̂

(i)
R

))
, (6)

SHiggs

=
∫

d4x
(
h†0
(
D̂µΦ̂

)
∗ h0

(
D̂µΦ̂

)
− µ2h†0(Φ̂) ∗ h0(Φ̂)

−λh†0(Φ̂) ∗ h0(Φ̂) ∗ h†0(Φ̂) ∗ h0(Φ̂)
)
, (7)

SYukawa

= −
∫

d4x

3∑
i,j=1

(
G(ij)
e

(
L̂

(i)

L ∗ he(Φ̂) ∗ ê(j)R

)
+G†e

(ij)
(
ê
(i)
R ∗ he(Φ̂)† ∗ L̂(j)

L

)
+G(ij)

u

(
Q̂

(i)

L ∗ hu(Φ̂c) ∗ û(j)
R

)
+G†u

(ij)
(
û

(i)
R ∗ hu

(
Φ̂c

)†
∗ Q̂(j)

L

)
+G(ij)

d

(
Q̂

(i)

L ∗ hd(Φ̂) ∗ d̂(j)
R

)
+G†d

(ij)
(
d̂
(i)

R ∗ hd(Φ̂)† ∗ Q̂(j)
L

))
. (8)

The gauge part Sgauge of the action is given in the next
section. The particle spectrum of the SM, as well as that
of the NCSM, is given in Table 1.

Analogously to the usual SM definitions for fermion
fields, we define ψ̂ = ψ̂† γ0. (The γ matrix can be pulled
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Table 1. The standard model fields. Here i ∈ {1, 2, 3} denotes the gen-
eration index. The electric charge is given by the Gell-Mann–Nishijima
relation Q = (T3 + Y ). The physical electroweak fields A, W+, W−

and Z are expressed through the unphysical U(1)Y and SU(2) fields A
and Ba (a ∈ {1, 2, 3}) in (26). The gluons Gb (b ∈ {1, 2, . . . , 8}) are in
the octet representation of SU(3)C

SU(3)C SU(2)L U(1)Y U(1)Q T3

e
(i)
R 1 1 −1 −1 0

L
(i)
L =

(
ν

(i)
L

e
(i)
L

)
1 2 −1/2

(
0

−1

) (
1/2

−1/2

)

u
(i)
R 3 1 2/3 2/3 0
d
(i)
R 3 1 −1/3 −1/3 0

Q
(i)
L =

(
u

(i)
L

d
(i)
L

)
3 2 1/6

(
2/3

−1/3

) (
1/2

−1/2

)

Φ =

(
φ+

φ0

)
1 2 1/2

(
1
0

) (
1/2

−1/2

)

W+, W−, Z 1 3 0 (±1, 0) (±1, 0)
A 1 1 0 0 0
Gb 8 1 0 0 0

out of the SW expansion because it commutes with the
matrices representing internal symmetries.) The indices
L and R denote the standard left and right components
ψL = 1/2(1−γ5)ψ and ψR = 1/2(1+γ5)ψ. For the conju-
gate Higgs field, we have Φc = iτ2Φ∗ (τ2 is the usual Pauli
matrix). In (6) and (8) the generation index is denoted
by i, j ∈ {1, 2, 3}. The matrices Ge, Gu and Gd are the
Yukawa couplings.

The non-commutative Higgs field Φ̂ is given by the
hybrid SW map

Φ̂ ≡ Φ̂[Φ, V, V ′]

= Φ+
1
2
θαβVβ

(
∂αΦ− i

2
(VαΦ− ΦV ′α)

)
(9)

+
1
2
θαβ
(
∂αΦ− i

2
(VαΦ− ΦV ′α)

)
V ′β + O (θ2) ,

which generalizes the Seiberg–Witten maps of both gauge
bosons and fermions. Φ̂ is a functional of two gauge fields
V and V ′ and transforms covariantly under gauge trans-
formations:

δΦ̂[Φ, V, V ′] = iΛ̂ ∗ Φ̂− iΦ̂ ∗ Λ̂′ , (10)

where Λ̂ and Λ̂′ are the corresponding gauge parameters.
Hermitian conjugation yields Φ̂[Φ, V, V ′]† = Φ̂[Φ†, V ′, V ].
The covariant derivative for the non-commutative Higgs
field Φ̂ is given by

D̂µΦ̂ = ∂µΦ̂− iV̂µ ∗ Φ̂+ iΦ̂ ∗ V̂ ′µ . (11)

As explained in [6], the precise representations of the
gauge fields V and V ′ in the Yukawa couplings are in-
herited from the fermions on the left (ψ̄) and on the right
side (ψ) of the Higgs field found in (8), respectively. The
following notation was introduced in (7) and (8):

h0(Φ̂) = Φ̂

[
Φ,

1
2
g′A + gBaT aL , 0

]
,

hψ(Φ̂) = Φ̂[Φ,RψL(V ),RψR(V )] , (12)

hψ(Φ̂c) = Φ̂[Φc,RψL(V ),RψR(V )] .

The representations Rψ, determined by the multiplet ψ,
are listed in Table 2.

Note that Rψ(f(Vµ)) = f(Rψ(Vµ)) for any function
f . Gauge invariance does not restrict the choice of repre-
sentation for the Higgs field in SHiggs. The simplest choice
for h0 which is adopted in the NCSM closely follows the
SM representation for the Higgs field. For a better un-
derstanding of the gauge invariance, let us consider the
hypercharges in two examples:

L̂L[V ] ∗ Φ̂[Φ, V, V ′] ∗ êR[V ′]

Y : 1/2 −1/2 ; 1︸ ︷︷ ︸
1/2

−1 ,

Q̂L[V ] ∗ Φ̂[Φ, V, V ′] ∗ d̂R[V ′]

Y : −1/6 1/6 ; 1/3︸ ︷︷ ︸
1/2

−1/3 .

(13)
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Table 2. The gauge fields in the covariant derivatives of the
fermions and in the Seiberg–Witten maps of the fermions in the
non-commutative standard model. The matrices T aL = τa/2
and T bS = λb/2 correspond to the Pauli and Gell-Mann ma-
trices respectively, and the summation over the indices a ∈
{1, 2, 3} and b ∈ {1, . . . , 8} is understood

ψ Rψ(Vµ)

e
(i)
R −g′ Aµ

L
(i)
L =

(
ν

(i)
L

e
(i)
L

)
− 1

2g
′ Aµ + g BaµT

a
L

u
(i)
R

2
3g

′ Aµ + gsG
b
µT

b
S

d
(i)
R − 1

3 g
′ Aµ + gsG

b
µT

b
S

Q
(i)
L =

(
u

(i)
L

d
(i)
L

)
1
6 g

′Aµ + g BaµT
a
L + gsG

b
µT

b
S

The choice of representation allows us to assign separate
left and right hypercharges to the non-commutative Higgs
field Φ̂, which add up to Higgs usual hypercharge [6]. Be-
cause of the minus sign in (10), the right hypercharge at-
tributed to the Higgs is effectively −YψR .

In grand unified theories (GUTs) it is more natural to
first combine the left-handed and right-handed fermion
fields and then contract the resulting expression with
Higgs fields to obtain a gauge-invariant Yukawa term.
Consequently, in NC GUTs we need to use the hybrid
SW map for the left-handed fermion fields and then sand-
wich them between the NC Higgs on the left- and the
right-handed fermion fields on the right [31].

3 Gauge sector of the NCSM action

The general form of the gauge kinetic terms is [31]

Sgauge = −1
2

∫
d4x
∑
R
cRTr

(
R
(
F̂µν

)
∗ R
(
F̂µν

))
,

(14)

where the non-commutative field strength F̂µν

F̂µν = ∂µV̂ν − ∂ν V̂µ − i[V̂µ ∗, V̂ν ]

= Fµν +
1
2
θαβ{Fµα, Fνβ} − 1

4
θαβ{Vα, (∂β +Dβ)Fµν}

+ O (θ2) , (15)

was obtained from the SW map for the non-commutative
vector potential (4). Ordinary field strength Fµν is given
by

Fµν = ∂µVν − ∂νVµ − i[Vµ, Vν ] , (16)

while its covariant derivative reads

DβFµν = ∂βFµν − i[Vβ , Fµν ] . (17)

Here Vµ represents the whole of the gauge potential for
the SM gauge group,

Vµ(x) = g′Aµ(x)Y + g

3∑
a=1

Baµ(x)T
a
L + gs

8∑
b=1

Gbµ(x)T
b
S .

(18)
The sum in (14) is over all unitary, irreducible and in-

equivalent representations R of a gauge group. The free-
dom in the kinetic terms is parametrized by real coeffi-
cients cR that are subject to the constraints

1
g2
I

=
∑
R
cRTr (R (T aI ) R (T aI )) , (19)

where gI are the usual “commutative” coupling constants
g′, g, gs and T aI are generators of U(1)Y , SU(2)L, SU(3)C ,
respectively. Equations (14) and (19) can also be written
more compactly as

Sgauge = −1
2

∫
d4xTr

1
G2 F̂µν ∗ F̂µν ,

1
g2
I

= Tr
1

G2T
a
I T

a
I ,

(20)

where the trace Tr is again over all representations and
G is an operator that commutes with all generators T aI
and encodes the coupling constants [9]. The trace in the
kinetic terms for gauge bosons is not unique, it depends
on the choice of representation. This would not be of im-
portance if the gauge fields were Lie algebra valued, but
in the non-commutative case they live in the enveloping
algebra. The possibility of new parameters in gauge the-
ories on non-commutative space-time is a consequence of
the fact that the gauge fields can take any value in the
enveloping algebra of the gauge group.

It is instructive to provide the general form of Sgauge,
(14), in terms of SM fields:

Sgauge = −1
2

∫
d4xTr

1
G2FµνF

µν

+ θρσ
∫

d4xTr
1

G2

[(
1
4
FρσFµν − FρµFσν

)
Fµν

]
+ O (θ2) . (21)

3.1 Minimal NCSM

In the minimal non-commutative standard model
(mNCSM) which adopts the whole of the gauge potential
(18) for the SM gauge group, the mNCSM gauge action is
given by

SmNCSM
gauge (22)

= −1
2

∫
d4x

(
1
g′2

Tr1 +
1
g2 Tr2 +

1
g2
s

Tr3

)
F̂µν ∗ F̂µν .
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Here the simplest choice was taken, i.e., a sum of three
traces over the U(1), SU(2), SU(3) sectors with

Y =
1
2

(
1 0
0 −1

)
, (23)

in the definition of Tr1 and the fundamental representa-
tions for SU(2) and SU(3) generators in Tr2 and Tr3,
respectively. In terms of physical fields, the action then
reads

SmNCSM
gauge

= −1
2

∫
d4x

(
1
2
AµνAµν + TrBµνBµν + TrGµνGµν

)
+

1
4
gs d

abcθρσ
∫

d4x

(
1
4
GaρσG

b
µν −GaρµG

b
σν

)
Gµν,c

+ O (θ2) , (24)

where Aµν , Bµν
(
= BaµνT

a
L

)
and Gµν

(
= GaµνT

a
S

)
denote

the U(1), SU(2)L and SU(3)c field strengths, respectively:

Aµν = ∂µAν − ∂νAµ ,

Baµν = ∂µB
a
ν − ∂νB

a
µ + g εabcBbµB

c
ν ,

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gs f

abcGbµG
c
ν . (25)

Note that in order to obtain the above result,1 one makes
use of the following symmetry properties of the group gen-
erators T aL = τa/2 and T aS = λa/2:

Tr
(
T aT b

)
=

1
2
δab , Tr

(
τaτ bτ c

)
= 2iεabc ,

Tr
(
λaλbλc

)
= 2
(
dabc + ifabc

)
,

where εabc is the usual antisymmetric tensor, while fabc
and dabc are totally antisymmetric and totally symmetric
structure constants of the SU(3) group.

There are no new electroweak gauge boson interac-
tions in (24) nor the vertices already present in SM, like
W+W−γ and W+W−Z, do acquire any corrections. This
is a consequence of our choice of the hypercharge (23) and
of the antisymmetry in both the Lorentz and the group
representation indices. However, new couplings, like ZZZ,
and θ corrections to SM vertices enter from the Higgs ki-
netic terms as elaborated in Sect. 5.1.

For the convenience of the reader, we list some usual
definitions that we use in the analysis of the electroweak
sector. The physical fields for the electroweak gauge
bosons (W±, Z) and the photon (A) are given by

W±µ =
B1
µ ∓ iB2

µ√
2

,

Zµ =
−g′Aµ + gB3

µ√
g2 + g′2

= − sin θWAµ + cos θWB3
µ ,

Aµ =
gAµ + g′B3

µ√
g2 + g′2

= cos θWAµ + sin θWB3
µ , (26)

where the electric charge is e = g sin θW = g′ cos θW.
1 Note that hereby we correct (56) of [6].

3.2 Non-minimal NCSM

We can use the freedom in the choice of traces in kinetic
terms for gauge fields to construct non-minimal versions of
the mNCSM (nmNCSM). Since the fermion-gauge boson
interactions remain the same regardless on the choice of
traces in the gauge sector, the matter sector of the action
is not affected, i.e. it is the same for both versions of the
NCSM.

The expansion in θ is at the same time an expansion
in the momenta. The θ-expanded action can thus be inter-
preted as a low-energy effective action. In such an effective
low-energy description it is natural to expect that all rep-
resentations that appear in commutative theory (matter
multiplets and adjoint representation) are important. All
representations of gauge fields that appear in the SM then
have to be considered in the definition of the trace (20).
In [9] the trace was chosen over all particles on which co-
variant derivatives act and which have different quantum
numbers. In the SM, these are, five multiplets of fermions
for each generation and one Higgs multiplet. The operator
G, which determines the coupling constants of the theory,
must commute with all generators (Y, T aL , T

b
S) of the gauge

group, so that it does not spoil the trace property of Tr.
This implies that G takes on constant values g1, . . . , g6 on
the six multiplets (Table 1). The operator G is in general
a function of Y and of the Casimir operators of SU(2) and
SU(3). The action derived from (21) for such nmNCSM
takes the following form:

SnmNCSM
gauge = SmNCSM

gauge

+ g′3κ1θ
ρσ

∫
d4x

(
1
4
AρσAµν − AµρAνσ

)
Aµν

+ g′g2κ2θ
ρσ

∫
d4x

[(
1
4
AρσB

a
µν − AµρB

a
νσ

)
Bµν,a+ c.p.

]
+ g′g2

sκ3 θ
ρσ

∫
d4x

[(
1
4
AρσG

b
µν − AµρG

b
νσ

)
Gµν,b+ c.p.

]
+ O (θ2) , (27)

where c.p. denotes cyclic permutations of field strength
tensors with respect to Lorentz indices. The constants κ1,
κ2 and κ3 represent parameters of the model given in [9,
10]. In the following we comment only on the pure triple
electroweak gauge-boson interactions.

New anomalous triple-gauge boson interactions that
are usually forbidden by Lorentz invariance, angu-
lar moment conservation and Bose statistics (Landau–
Pomeranchuk–Yang theorem) can arise within the frame-
work of the nmNCSM [9, 10], but also in the alternative
approach to the NCSM given in [27]. Neutral triple-gauge
boson terms which are not present in the SM Lagrangian
can be extracted from the action (27). In terms of physical
fields (A,Z) they are

Lγγγ =
e

4
sin 2θW Kγγγθ

ρσAµν (AµνAρσ − 4AµρAνσ) ,

LZγγ =
e

4
sin 2θWKZγγ θ

ρσ [2Zµν (2AµρAνσ −AµνAρσ)

+ 8ZµρAµνAνσ − ZρσAµνA
µν ] ,
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LZZγ = LZγγ(Aµ ↔ Zµ) ,
LZZZ = Lγγγ(Aµ → Zµ) , (28)

where

Kγγγ =
1
2
gg′(κ1 + 3κ2) ,

KZγγ =
1
2

[
g′2κ1 +

(
g′2 − 2g2

)
κ2

]
,

KZZγ =
−1
2gg′

[
g′4κ1 + g2

(
g2 − 2g′2

)
κ2

]
,

KZZZ =
−1
2g2

(
g′4κ1 + 3g4κ2

)
, (29)

and here we have introduced the shorthand notation
Xµν ≡ ∂µXν − ∂νXµ for X ∈ {A,Z}. Details of the
derivations of neutral triple-gauge boson terms and the
properties of the coupling constants in (27) are explained
in [9, 10].

Additionally, in contrast to the mNCSM (24), elec-
troweak triple-gauge boson terms already present in the
SM acquire θ corrections in the nmNCSM. Such contribu-
tions which originate from (27) read

LWWγ = LSM
WWγ + LθWWγ + O (θ2) ,

LWWZ = LSM
WWZ + LθWWZ + O (θ2) ,

LθWWγ =
e

2
sin 2θWKWWγ θ

ρσ

× {Aµν [2 (W+
µρW

−
νσ +W−µρW

+
νσ

)
− (W+

µνW
−
ρσ +W−µνW

+
ρσ

)]
+4Aµρ

[
W+µνW−νσ +W−µνW+

νσ

]
−AρσW+

µνW
−µν} ,

LθWWZ = LθWWγ(Aµ → Zµ) , (30)

with

KWWγ = − g

2g′
[
g′2 + g2

]
κ2,

KWWZ = −g′

g
KWWγ . (31)

It is important to stress that in both the mNCSM and
the nmNCSM there are additional θ corrections to these
vertices coming from the Higgs part of the action. This
will be elaborated in detail in Sect. 5.1.

The new parameters in the non-minimal NCSM can
be restricted by considering GUTs on non-commutative
space-time [31].

4 Electroweak matter currents

In this section we concentrate on the fermion electroweak
sector of the NCSM. Some terms are derivative valued.
Nevertheless, the hermiticity of the Seiberg–Witten maps
for the gauge field guarantees the reality of the action.

Using the SW maps of the non-commutative fermion field
ψ̂ with corresponding function Rψ(Vα)

ψ̂ = ψ − 1
2
θαβ Rψ(Vα) ∂βψ

+
i
8
θαβ [Rψ(Vα),Rψ(Vβ)]ψ + O (θ2) , (32)

and its covariant derivative

D̂µψ̂ = ∂µψ̂ − iRψ(V̂µ) ∗ ψ̂
= Dµ

[
ψ − 1

2
θαβ Rψ(Vα) ∂βψ

+
i
8
θαβ [Rψ(Vα),Rψ(Vβ)]ψ

]
(33)

− iRψ

(
1
4
θαβ{∂αVµ + Fαµ, Vβ}

)
ψ

+
1
2
θαβ (∂αRψ(Vµ))∂βψ + O (θ2) ,

it is straightforward to derive the general expression

Sψ =
∫

d4xψ̂ ∗ î�Dψ̂ (34)

=
∫

d4x

(
iψ �Dψ − i

4
ψ θµνρRψ(Fµν)Dρψ + O (θ2)) ,

where θµνρ is a totally antisymmetric quantity:

θµνρ = θµνγρ + θνργµ + θρµγν . (35)

The terms of the form given in (34) appear in Sfermions (6).
One can easily show that S†fermions = Sfermions, to order
O(θ2). From (34) we have

S†ψ = Sψ − i
4

∫
d4x

(
ψ θµνρ Rψ(DρFµν)ψ

)
+ O (θ2) .

Since Rψ (θµνρDρFµν) = θµνρRψ(DρFµν) for constant θ,
and

θµνρ (DρFµν) = θµνγρ (DρFµν +DνFρµ +DµFνρ) ,

the θ-dependent term vanishes due to the Bianchi identity

DρFµν +DνFρµ +DµFνρ = 0 ,

thereby proving the reality of the action Sψ and, hence,
the reality of the action Sfermions to O(θ2). However, note
that the reality of the action is not essential, but is very
desirable.2

Next, we express the NCSM results for the electroweak
currents in terms of physical fields starting with the left-
handed electroweak sector. In the following ΨL represents
ΨL ∈ {L(i)

L , Q
(i)
L } and has the general form

ΨL =

(
ψup,L

ψdown,L

)
. (36)

2 Weinberg writes in his book: “The action is supposed to be
real. This is because we want just as many field equations as
there are fields. [. . . ] The reality also ensures that the genera-
tors of various symmetry transformations are Hermitian oper-
ators.” [32].
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In this case, according to Table 2 the representation
RΨL(Vµ) without SU(3) fields takes the form

RΨL(Vµ) = g′AµYΨL + g BaµT
a
L . (37)

The hypercharge generator YΨL (see Table 1) can be
rewritten as

YΨL = Qψup − T3,ψup,L = Qψdown − T3,ψdown,L , (38)

and we make use of (26). The left-handed electroweak part
of the action Sψ can be cast in the form

Sψ,ew,L =
∫

d4x
(
Ψ̄L i �∂ ΨL + Ψ̄LJ(L)ΨL

)
=
∫

d4x
(
Ψ̄L i �∂ ΨL + ψ̄up,LJ

(L)
12 ψdown,L

+ψ̄down,LJ
(L)
21 ψup,L

+ψ̄up,LJ
(L)
11 ψup,L + ψ̄down,LJ

(L)
22 ψdown,L

)
, (39)

where J(L) is a 2 × 2 matrix whose off-diagonal elements
(J (L)

12 , J (L)
21 ) denote the charged currents and diagonal ele-

ments (J (L)
11 , J (L)

22 ) the neutral currents. After some algebra
we obtain

J
(L)
12 =

g√
2

�W+ + J
(L,θ)
12 + O (θ2) , (40a)

J
(L)
21 =

g√
2

�W− + J
(L,θ)
21 + O (θ2) , (40b)

J
(L)
11 =

[
eQψup �A+

g

cos θW

(
T3,ψup,L −Qψup sin2 θW

) �Z
]

+J (L,θ)
11 + O (θ2) , (40c)

J
(L)
22 =[

eQψdown �A+
g

cos θW

(
T3,ψdown,L −Qψdown sin2 θW

) �Z
]

+J (L,θ)
22 + O (θ2) , (40d)

where

J
(L,θ)
12 =

g

2
√

2
θµνρW+

µ

{
−i

←
∂ ν
→
∂ ρ

+ e
[
Qψup Aν

→
∂ ρ +Qψdown Aν

←
∂ ρ

+(Qψup +Qψdown)(∂ρAν)
]

+
g

cos θW

[(
T3,ψup,L −Qψup sin2 θW

)
Zν
→
∂ ρ

+
(
T3,ψdown,L −Qψdown sin2 θW

)
Zν

←
∂ ρ

+
((
T3,ψup,L + T3,ψdown,L

)
−(Qψup +Qψdown) sin2 θW

)
(∂ρZν)

]
(41)

− ie g
cos θW

(Qψup T3,ψdown,L −Qψdown T3,ψup,L) Aν Zρ

}
and

J
(L,θ)
11 =

1
2
θµνρ

{
ieQψup (∂νAµ)

→
∂ ρ

+
ig

cos θW

(
T3,ψup,L −Qψup sin2 θW

)
(∂νZµ)

→
∂ ρ

− e2Q2
ψup

(∂ρAµ)Aν

− g2

cos2 θW

(
T3,ψup,L −Qψup sin2 θW

)2
(∂ρZµ)Zν

− e g

cos θW
Qψup

(
T3,ψup,L −Qψup sin2 θW

)
× [(∂ρAµ)Zν −Aµ(∂ρZν)]

− g2

2

[
W+
µ W−ν

→
∂ ρ +

(
∂ρW

+
µ

)
W−ν

]
+

ieg2

2
(2Qψup −Qψdown) W+

µ W
−
ν Aρ

+
ig3

2 cos θW

[
(2T3,ψup,L − T3,ψdown,L)

−(2Qψup −Qψdown) sin2 θW
]
W+
µ W

−
ν Zρ

}
, (42)

while
J

(L,θ)
21

J
(L,θ)
22

}
=

{
J

(L,θ)
12

J
(L,θ)
11

, (43)

under W+ ↔ W−, Qψup ↔ Qψdown , T3,ψup,L ↔ T3,ψdown,L

Here and in the following we use the notation in which
→
∂ ρ denotes the partial derivative which acts only on the

fermion field on the right side, while
←
∂ ρ denotes the partial

derivative which acts only on the fermion field on the left
side, i.e.

∂ρψ ≡→∂ ρ ψ ∂ρψ ≡ ψ
←
∂ ρ . (44)

We note that in contrast to the SM case, although(∫
d4x ψ̄up,LJ12ψdown,L

)†
=
∫

d4x ψ̄down,LJ21ψup,L ,

we have
J

(L)
21 �= γ0

(
J

(L)
12

)†
γ0 .

The reason is the specific form of the interaction term (see
(34)) which contains derivatives, whose presence produces

J
(L)
21 = γ0

(
J

(L)
12

(→
∂↔←∂

))†
γ0 .

Now, we turn to the results for the right-handed elec-
troweak sector. Here ψR represents ψR ∈ {e(i)R , u

(i)
R , d

(i)
R },

and the representation RψR(Vµ) from Table 2 without
SU(3) fields is given by

RψR(Vµ) = g′AµYψR = eQψAµ − g

cos θW
Qψ sin2 θWZµ .

(45)
For the right-handed fermions, T3,ψR = 0 and YψR = Qψ.
The right-handed electroweak part of the action Sψ is of
the form

Sψ,ew,R =
∫

d4x
(
ψ̄R i �∂ ψR + ψ̄RJ

(R)ψR

)
, (46)

J (R) =
[
eQψ �A− g

cos θW
Qψ sin2 θW �Z

]
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+J (R,θ) + O (θ2) , (47)

J (R,θ) =
1
2
θµνρ

{
ieQψ(∂νAµ)

→
∂ ρ

− ig
cos θW

Qψ sin2 θW(∂νZµ)
→
∂ ρ

−e2Q2
ψ(∂ρAµ)Aν − g2

cos2 θW
Q2
ψ sin4 θW(∂ρZµ)Zν

+
e g

cos θW
Q2
ψ sin2 θW [(∂ρAµ)Zν −Aµ (∂ρZν)]

}
. (48)

Let us now present our results3 in a form suit-
able for further calculations, derivation of Feynman rules
and phenomenological applications, i.e. in terms of Ψ ∈
{L(i), Q(i)}, and thus ψup ∈ {ν(i), u(i)}, and ψdown ∈
{e(i), d(i)}. The electroweak part of the action Sψ then
takes the form

Sψ,ew =
∫

d4x
{
Ψ̄ i �∂ Ψ

+ ψ̄upJ
(L)
12

1
2
(1 − γ5)ψdown + ψ̄downJ

(L)
21

1
2
(1 − γ5)ψup

+ ψ̄up
1
2

[(
J

(L)
11 + J (R)

)
−
(
J

(L)
11 − J (R)

)
γ5

]
ψup (49)

+ ψ̄down
1
2

[(
J

(L)
22 + J (R)

)
−
(
J

(L)
22 − J (R)

)
γ5

]
ψdown

}
,

and the currents J (L)
ij can be read from (40)–(43), while

J (R) is given by (47) and (48) (with Qψ substituted by
the corresponding Qψup or Qψdown).

Finally, we note that the fermion fields appearing in
this section are not mass but weak-interaction eigenstates.
In order to present the results in terms of mass eigenstates,
the Cabbibo–Kobayashi–Maskawa matrix (denoted by Vij
in the following) enters the quark currents leading to mix-
ing between generations and to the modification of the
quark currents by Vij factors:

q̄(i)up VijJ
(L)
12

1
2
(1 − γ5) q

(j)
down, q̄

(j)
down V

∗
ijJ

(L)
21

1
2
(1 − γ5) q(i)up ,

where q
(i)
up and q

(i)
down represent mass eigenstates. In the

NCSM, as in the SM, the neutrino masses are not consid-
ered and consequently the leptonic mixing matrix is diago-
nal in contrast to the neutrino mass extended models. The
corresponding non-commutative extensions which include
neutrino masses can be made along the lines sketched here
(see Sect. 5.2 for further details on this subject).

In this section, only electroweak interactions were con-
sidered. Pure QCD, as well as mixed terms which appear
in the NCSM due to the Seiberg–Witten mapping, are left
for a future publication [29].

3 We note that in the preceding considerations we have cor-
rected the electroweak currents presented in the appendix of [6]
and expressed them using more compact and transparent no-
tation.

5 Higgs sector of the NCSM action

In the preceding section we have expanded the fermionic
part of the action and performed a detailed analysis of
the electroweak interactions. We devote this section to the
analysis of SHiggs and SYukawa to first order in θ.

5.1 Higgs kinetic terms

The expansion of the Higgs part of the action (7) to first
order in θ yields4

SHiggs =
∫

d4x
(
(DµΦ)† (DµΦ) − µ2Φ†Φ− λ

(
Φ†Φ

)2)
+

1
2
θαβ
∫

d4x (50)

×Φ†
(
Uαβ + U†αβ +

1
2
µ2Fαβ − 2iλΦ (DαΦ)†Dβ

)
Φ ,

where

Uαβ =
(←
∂µ +iVµ

)
(− ∂µVα∂β − Vα∂µ∂β + ∂αVµ∂β

+iVµVα∂β +
i
2
VαVβ∂µ +

i
2
∂µ(VαVβ)

+
1
2
VµVαVβ +

i
2
{Vα, ∂βVµ + Fβµ}

)
. (51)

Equation (50) contains the usual covariant derivative of
the Higgs boson Dµ = ∂µ1− iVµ where Vµ = g′AµYΦ1+
gBaµT

a
L , and 1 is a unit matrix, suppressed in the following.

Also Fµν = ∂µVν − ∂νVµ − i[Vµ,Vν ] .
Let us construct explicit expressions for the elec-

troweak gauge matrices occurring in (50) and (51). The
gauge field Vµ can be expressed in a matrix form as

Vµ =

 g′AµYΦ + gT3,φupB
3
µ

g√
2
W+
µ

g√
2
W−µ g′AµYΦ + gT3,φdownB

3
µ

 ,

(52)
where from Table 1 one can read5 YΦ = 1/2, T3,φup = 1/2,
T3,φdown = −1/2. The diagonal matrix elements can also
be expressed in terms of physical fields using (26). Hence,
one obtains

V11,µ = eAµ +
g

2 cos θW

(
1 − 2 sin2 θW

)
Zµ ,

V22,µ = − g

2 cos θW
Zµ . (53)

The product of two gauge fields is given by

VµVα =

 V11,µV11,α +
g2

2
W+
µ W

−
α

g√
2

(
W−α V22,µ +W−µ V11,α

) (54)

4 In order to make the presentation more transparent, in this
section, we denote the 2 × 2 matrices appearing in the action
by bold letters.

5 Note YΦ = Qφup − T3,φup = Qφdown − T3,φdown .
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g√
2

(
W+
α V11,µ +W+

µ V22,α
)

V22,µV22,α +
g2

2
W−µ W

+
α

 ,

while the product of three gauge fields can be expressed
as

VµVαVβ = Mµαβ , (55a)

with matrix elements

Mµαβ,11 = V11,µV11,αV11,β

+
g2

2

(
V11,µW

+
αW

−
β +W+

µ W
−
α V11,β +W+

µ V22,αW
−
β

)
,

Mµαβ,12

=
g√
2

(
V11,µW

+
α V22,β + V11,µV11,αW

+
β +W+

µ V22,αV22,β

+
g2

2
W+
µ W

−
α W

+
β

)
,

Mµαβ,21

=
g√
2

(
V22,µW

−
α V11,β + V22,µV22,αW

−
β +W−µ V11,αV11,β

+
g2

2
W−µ W

+
αW

−
β

)
,

Mµαβ,22 = V22,µV22,αV22,β (55b)

+
g2

2

(
V22,µW

−
α W

+
β +W−µ W

+
α V22,β +W−µ V11,αW

+
β

)
.

For the field strength one obtains

Fµν =

 eAµν +
g

2 cos θW

(
1 − 2 sin2 θW

)
Zµν

g√
2
W−µν

g√
2
W+
µν

− g

2 cos θW
Zµν


− ig2

2

(
W+
µ W

−
ν −W+

ν W
−
µ

−
√

2
(
B3
µW

−
ν −W−µ B

3
ν

)
√

2
(
B3
µW

+
ν −W+

µ B
3
ν

)
−W+

µ W
−
ν +W+

ν W
−
µ

)
, (56)

where Xµν = ∂µXν − ∂νXµ for X ∈ {A,Z,W+,W−}.
By making use of (26) one can completely express the off-
diagonal elements in terms of the physical fields Aµ and
Zµ. The other combinations of fields appearing in (50) and
(51) can also be easily obtained. We will not provide the
explicit expressions here.

It is not difficult to see that the value of the Higgs
field that minimizes the (non-commutative) Higgs poten-
tial is the same as in the commutative case because of the
following: We are looking for the minimum value of the po-
tential attained for constant fields and hence can ignore all
derivative terms and all star products. This leaves terms
like θαβVαVβΦ in the hybrid SW map that could possibly
lead to corrections of the vacuum expectation value of the

Higgs. Taking into account also the potential of the gauge
fields it is, however, clear that we should consider only
Vα = 0, i.e. Φ̂ = Φ when fixing the vacuum expectation
value.

The Higgs field is chosen to be in the unitary gauge

Φ(x) ≡ φ(x) =
1√
2

(
0

h(x) + v

)
, (57)

where v =
√−µ2/λ represents the Higgs vacuum expec-

tation value, while h(x) is the physical Higgs field.
There are several points that need to be mentioned in

connection with the NCSM version of the SHiggs part of
the action (50). From (57) one trivially obtains∫

d4xφ†Hφ =
∫

d4x(h(x) + v)H22(h(x) + v) ,

where H stands here for any 2× 2 matrix. Taking into
account this along with (52) and (54-56), it is easy to see
that terms containing one or more Higgs fields h(x) as well
as terms containing solely gauge bosons reside in (50).

First, let us examine the contributions of the last two
θ-dependent terms in (50). By making use of (50-56) for
the Higgs field in unitary gauge we find

1
2
θαβ
∫

d4xφ†
(

1
2
µ2Fαβ − 2iλφ (Dαφ)†Dβ

)
φ

=
1
8
θαβ
{

ig2
∫

d4x(h+ v)2
[
µ2 + λ(h+ v)2

]
W+
αW

−
β

+
g

cos θW

∫
d4x(h+ v)2

× [−µ2(∂αZβ) + 2λ(h+ v)(∂αh)Zβ
]}

. (58)

Owing to the Stokes theorem the term containing only one
Z field vanishes. Similarly, by performing partial integra-
tion and taking into account v2 = −µ2/λ, the spuriously
looking two-field terms vanish and (58) simplifies to

1
8
θαβλ

∫
d4xh(h+ v)(h+ 2v)

×
{

ig2(h+ v)W+
αW

−
β + 2

g

cos θW
(∂αh)Zβ

}
. (59)

Second, let us note that, in contrast to the SM case, in
the NCSM action SHiggs (50) there are terms proportional
to v2 that cannot be identified as the mass terms of the
Higgs and weak gauge bosons fields but represent inter-
action terms. Hence, after the identification of the mass
terms (−1/2m2

Hh
2), M2

WW
+
µ W

−µ and 1/2M2
ZZµZ

µ with
Higgs, W and Z boson masses

m2
H = 2µ2 = −2v2λ, (60)

M2
W =

1
4
v2g2, M2

Z =
1
4
v2
(
g2 + g′2

)
=

M2
W

cos2 θW
,

respectively, additional terms remain which describe in-
teractions of Higgs and gauge bosons and interactions
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of solely gauge bosons. The latter behavior is novel in
comparison with the standard model and is introduced
by the Seiberg–Witten mapping. The analysis of (50)
reveals that, in addition to the interaction terms con-
tained in Sgauge (21), the last three terms of the second
bracket in Uαβ (51) give rise to order θ contributions
to the three- and four-gauge-boson couplings. Specifically,
the three-gauge-boson interaction terms from SHiggs read
(−1/4)v2 θαβ [Iαβ + I†αβ ]22 , where Iαβ = Vµ[(∂µVα)Vβ +
Vα(∂βVµ) + (∂βVµ)Vα] . By making use of (55) one ar-
rives at explicit expressions for the W+W−γ, W+W−Z
and ZZZ interaction terms:
−1
4
v2θαβ

[
Iαβ + I†αβ

]
22

=
e

2
M2
W θ

αβ

× [(W+µW−α +W−µW+
α

)
Aµβ + (∂βAα)W+µW−µ

]
− g

4 cos θW
M2
W θ

αβ
{
Zµ
[
W+
µ

(
∂βW

−
α

)
+W−µ

(
∂βW

+
α

)]
+
(
ZµW+

α + ZαW
+µ)W−µβ +

(
ZµW−α + ZαW

−µ)W+
µβ

− cos 2θW
× [(W+µW−α +W−µW+

α

)
Zµβ + (∂βZα)W+µW−µ

]}
+

g

4 cos θW
M2
Zθ

αβ Zµ Zα (2∂βZµ − ∂µZβ) . (61)

The four-gauge-boson interaction terms can be analyzed
analogously.

5.2 Yukawa terms

Next, we proceed to the θ-expansion of the SYukawa action
(8). Similarly to the analysis of the electroweak currents
presented in Sect. 4, let us first analyze the general form
for the Yukawa action,

Sψ,Yukawa

= −
∫

d4x

3∑
i,j=1

[(
G

(ij)
down

(
Ψ̂

(i)

L ∗ hψdown(Φ̂) ∗ ψ̂(j)
down,R

)
+ h.c.) (62)

+
(
G(ij)

up

(
Ψ̂

(i)

L ∗ hψup(Φ̂c) ∗ ψ̂(j)
up,R

)
+ h.c.

)]
.

Here Gdown and Gup are general 3 × 3 matrices which
comprise Yukawa couplings while ψ(j)

up,R and ψ
(j)
down,R de-

note up and down fermion fields of the generation j. As we
analyze a simple non-commutative extension of the SM,
Gijup vanishes for leptons. Furthermore, as in the SM one
can find a biunitary transformation that diagonalizes the
G matrices

Gdown =
√

2
v
SdownMdown T

†
down , Gup =

√
2
v
SupMup T

†
up ,

and obtain the diagonal 3 × 3 mass matrices Mdown and
Mup. Next, one redefines the fermion fields to mass eigen-
states

ψ̂
(i)

down,LS
(ij)
down → ψ̂

(j)

down,L, T
†(ij)
downψ̂

(j)
down,R → ψ̂

(i)
down,R,

ψ̂
(i)

up,LS
(ij)
up → ψ̂

(j)

up,L, T †(ij)up ψ̂
(j)
up,R → ψ̂

(i)
up,R.

This redefinition of the fields introduces the fermion mix-
ing matrix V = S†up Sdown in the electroweak currents
(49), and, owing to the hybrid SW mapping of the Higgs
field, in the Yukawa part of the NCSM action as well.
We introduce the matrix Vf , which, like in the SM, corre-
sponds to

Vf =

{
1 for f = �

V ≡ VCKM for f = q
, (63)

where � and q denote leptons and quarks, respectively.
Hence, the quark mixing is described by the CKM matrix,
while the mixing in the lepton sector is absent but can be
additionally introduced following the commonly accepted
modifications of the SM which comprise neutrino masses.
Furthermore, as the Higgs part of the NCSM action intro-
duces mass dependent gauge boson couplings (see (61)),
the Yukawa part of the NCSM action introduces fermion
mass dependent interactions. In contrast to the NCSM,
in the SM fermion mass dependent interactions always in-
clude an interaction with the Higgs field.

Using (12) we find∫
d4x Ψ̂

(i)

L ∗ hψdown(Φ̂) ∗ ψ̂(j)
down,R

=
∫

d4x
(
Ψ

(i)
L Φψ

(j)
down,R

)
+

1
2

∫
d4x θµνΨ

(i)
L

[
−i
←
∂ µ Φ

→
∂ ν

− ←
∂ ν RΨL(Vµ)Φ− ΦRψdown,R(Vµ)

→
∂ ν

− RΨL(Vµ)(∂µΦ) − (∂µΦ) Rψdown,R(Vµ)
+ iRΨL(Vµ)RΨL(Vν)Φ+ iΦRψdown,R(Vµ)Rψdown,R(Vν)

− iRΨL(Vµ)ΦRψdown,R(Vν)
]
ψ

(j)
down,R. (64)

The representations RΨL(Vµ) and Rψdown,R(Vµ) can be
read from Table 2. Expressions valid for both leptons and
quarks, with strong interactions omitted, are given in (37)
and (45). For the Higgs field (57) is used.

Finally, using (64), after some algebra we obtain the
following result for (62) expressed in terms of physical
fields (and with gluons omitted):

Sψ,Yukawa =
∫

d4x

3∑
i,j=1

[
ψ̄

(i)
down

(
N
V (ij)
dd + γ5N

A(ij)
dd

)
ψ

(j)
down

+ψ̄(i)
up

(
NV (ij)
uu + γ5N

A(ij)
uu

)
ψ(j)

up

+ψ̄(i)
up

(
C
V (ij)
ud + γ5 C

A(ij)
ud

)
ψ

(j)
down

+ψ̄(i)
down

(
C
V (ij)
du + γ5 C

A(ij)
du

)
ψ(j)

up

]
. (65)

The neutral currents read

N
V (ij)
dd = −M (ij)

down

(
1 +

h

v

)
+N

V,θ(ij)
dd + O (θ2) ,
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N
A(ij)
dd = N

A,θ(ij)
dd + O (θ2) ,

NV (ij)
uu = −M (ij)

up

(
1 +

h

v

)
+NV,θ(ij)

uu + O (θ2) ,
NA(ij)
uu = NA,θ(ij)

uu + O (θ2) , (66)

where

N
V,θ(ij)
dd

= −1
2
θµνM

(ij)
down

{
i
(∂µh)
v

→
∂ ν

− [eQψdownAµ

+
g

2 cos θW

(
T3,ψdown,L − 2Qψdown sin2 θW

)
Zµ

]
(∂νh)
v

+ [eQψdown(∂νAµ)

+
g

2 cos θW

(
T3,ψdown,L − 2Qψdown sin2 θW

)
(∂νZµ)

−i
g2

2
W+
µ W

−
ν

](
1 +

h

v

)}
, (67)

N
A,θ(ij)
dd

=
g

4 cos θW
T3,ψdown,L θ

µνM
(ij)
down

(
1 +

h

v

)
Zµ

×
[(←
∂ ν − →

∂ ν

)
+ 2ieQψdownAν

]
, (68)

and

N
V,θ(ij)
uu

N
A,θ(ij)
uu

}
=

{
N
V,θ(ij)
dd

N
A,θ(ij)
dd

(W+ ↔ W−,down → up).

(69)
The charged currents are given by

C
V (ij)
ud = C

V,θ(ij)
ud + O (θ2) ,

C
A(ij)
ud = C

A,θ(ij)
ud + O (θ2) , (70)

where

C
V,θ(ij)
ud

= − g

4
√

2
θµν
(

1 +
h

v

)
×
{[(

(VfMdown)(ij) + (MupVf )
(ij)
) (
∂νW

+
µ

)
+
(
(VfMdown)(ij)

→
∂ ν + (MupVf )

(ij) ←
∂ ν

)
W+
µ

]
(71)

+ie
(
(VfMdown)(ij)Qψup − (MupVf )

(ij)
Qψdown

)
AµW

+
ν

+i
g

cos θW

[
(VfMdown)(ij)

(
2T3,ψup,L −Qψup sin2 θW

)
− (MupVf )

(ij) (2T3,ψdown,L −Qψdown sin2 θW
)]
ZµW

+
ν

}
,

and
C
A,θ(ij)
ud = C

V,θ(ij)
ud (Mup → −Mup) , (72)

while

C
V (ij)
du =

(
C
V (ij)
ud (

→
∂↔←∂ )

)†
,

C
A(ij)
du = −

(
C
A(ij)
ud (

→
∂↔←∂ )

)†
. (73)

Note that
→
∂ and

←
∂ are defined in (44).

At the end, observe that the simplified introduction of
the fermion mass and the use of the relation

Sψ,m =
∫

d4xψ̂ ∗ (î�D −m) ψ̂

=
∫

d4x
[
ψ(i �D −m)ψ (74)

−1
4
ψRψ(Fµν) (iθµνρDρ −mθµν)ψ +O (θ2)]

is valid only in the case of pure QED and pure QCD.

6 Feynman rules

On the basis of the results presented in Sects. 4 and 5, it is
now straightforward to derive the Feynman rules needed
for phenomenological applications of the NCSM, i.e. for
the calculation of physical processes. In this section, we
list a number of selected Feynman rules for the NCSM
pure electroweak interactions up to order θ. We omit in-
teractions with the Higgs particle, boson interactions with
four and more gauge fields, and fermion interactions with
more than two gauge bosons.

The following notation for vertices has been adopted:
all gauge boson momenta are taken to be incoming; fol-
lowing the flow of the fermion line, the momenta of the
incoming and outgoing fermions are given by pin and
pout, respectively. In the following we denote fermions by
f , and the generation indices by i and j. Furthermore,
f

(i)
u ∈ {ν(i), u(i)} and f (i)

d ∈ {e(i), d(i)}.
For the Feynman rules we use the following definitions:

cV,f = T3,fL − 2Qf sin2 θW ,

cA,f = T3,fL . (75)

The charge Q and the weak isospin T3 can be read from
Table 1. The notation Vf is introduced in (63), while θµνρ
is defined in (35). We also make use of (θk)µ ≡ θµνkν =
−kνθνµ ≡ −(kθ)µ and (kθp) ≡ kµθ

µνpν .

6.1 Minimal NCSM

In this subsection we present selected Feynman rules for
the mNCSM containing SM contributions and θ correc-
tions. The θ corrections to vertices containing fermions
are obtained using (49) and the Yukawa part of the ac-
tion (65) has to be taken into account as well, because
it generates additional mass dependent terms which mod-
ify some interaction vertices. In comparison with the SM,
this is a novel feature. Similarly, the gauge boson couplings
present in (24) receive additional θ dependent corrections
from the Higgs part of the action (50) and even new three-
and four-gauge boson couplings appear, see (61).
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First, we list three-vertices that appear in the SM as
well. We have
• f

f

Aµ(k)

ieQf

[
γµ − i

2
kν (θµνρ p

ρ
in − θµνmf )

]
= ieQf γµ

+
1
2
eQf [(poutθpin)γµ − (poutθ)µ(/pin −mf )

−(/pout −mf )(θpin)µ] , (76)

• f

f

Zµ(k)

ie
sin 2θW

{(
γµ − i

2
kνθµνρp

ρ
in

)
(cV,f − cA,fγ5) (77)

− i
2
θµνmf [pνin (cV,f − cA,fγ5) − pνout (cV,f + cA,fγ5)]

}
,

• f
(i)
u

f
(j)
d

W+
µ (k)

f
(j)
d

f
(i)
u

W−
µ (k)

ie
2
√

2 sin θW

(
V

(ij)
f

V
∗(ij)
f

){[
γµ − i

2
θµνρk

νpρin

]
(1 − γ5) (78)

− i
2
θµν

[(
m
f
(i)
u

m
f
(j)
d

)
pνin(1 − γ5) −

(
m
f
(j)
d

m
f
(i)
u

)
pνout(1 + γ5)

]}
,

• W+
ρ (k3)

Aµ(k1)

W−
ν (k2)

ie {gµν (k1 − k2)
ρ + gνρ (k2 − k3)

µ + gρµ (k3 − k1)
ν

+
i
2
M2
W [θµνkρ1 + θµρkν1 + gµν (θk1)

ρ − gνρ (θk1)
µ

+gρµ (θk1)
ν ]} , (79)

• W+
ρ (k3)

Zµ(k1)

W−
ν (k2)

ie cot θW {gµν (k1 − k2)
ρ + gνρ (k2 − k3)

µ

+ gρµ (k3 − k1)
ν

+
i
2
M2
W [θµνkρ1 + θµρkν1 + gµν (θk1)

ρ − gνρ (θk1)
µ

+gρµ(θk1)ν ]

− i
4
M2
Z [θµν (k1 − k2)

ρ + θνρ (k2 − k3)
µ

+θρµ (k3 − k1)
ν (80)

−2gµν (θk3)
ρ − 2gνρ (θk1)

µ − 2gρµ (θk2)
ν ]} .

Here we give the new three-gauge-boson coupling
which follows from the Higgs action (50), i.e., (61):

• Zρ(k3)

Zµ(k1)

Zν(k2)

eM2
Z

2 sin 2θW
[θµν (k1 − k2)

ρ + θνρ (k2 − k3)
µ

+ θρµ (k3 − k1)
ν

− 2gµν (θk3)
ρ − 2gνρ (θk1)

µ − 2gρµ (θk2)
ν ] . (81)

Additionally, from the Higgs action (50) one can de-
rive the θ corrections to the electroweak four-gauge-boson
vertices already present in SM (see (24)), as well as, new
four-gauge-boson vertices.

Equation (49) also describes the interaction vertices in-
volving fermions and two or three gauge bosons. These do
not appear in the SM. In the following we provide all con-
tributions to such vertices with four legs and correspond-
ing mass dependent contributions from (65). We have
• f

f Aν(k2)

Aµ(k1)

−1
2
e2Q2

fθµνρ (kρ1 − kρ2) , (82)

•
f

f Zν(k2)

Aµ(k1)

− e2Qf
2 sin 2θW

(83)

× [θµνρ (kρ1 − kρ2) (cV,f − cA,fγ5) − 2θµνmf cA,fγ5] ,

• f

f Zν(k2)

Zµ(k1)

− e2

2 sin2 2θW
θµνρ (kρ1 − kρ2) (cV,f − cA,fγ5)

2
, (84)
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• f

f W−
ν (k2)

W+
µ (k1)

−e2
8 sin2 θW

[θµνρ (pρin + kρ1) (1 − γ5) + 2θµνmf ] , (85)

• f
(i)
u

f
(j)
d W+

ν (k2)

Aµ(k1) f
(j)
d

f
(i)
u W−

ν (k2)

Aµ(k1)

−e2
4
√

2 sin θW

×
{
θµνρ

[(
Q
f
(i)
u

Q
f
(j)
d

)
(pρin + kρ1) −

(
Q
f
(j)
d

Q
f
(i)
u

)
(pρin + kρ2)

]
× (1 − γ5)

+θµν

(mf
(i)
u
Q
f
(j)
d

m
f
(j)
d

Q
f
(i)
u

)
(1 − γ5) (86)

−
(
m
f
(j)
d

Q
f
(i)
u

m
f
(i)
u
Q
f
(j)
d

)
(1 + γ5)


(
V

(ij)
f

V
∗(ij)
f

)
,

• f
(i)
u

f
(j)
d W+

ν (k2)

Zµ(k1) f
(j)
d

f
(i)
u W−

ν (k2)

Zµ(k1)

− e2

4
√

2 sin θW sin 2θW

(
V

(ij)
f

V
∗(ij)
f

)

×
{
θµνρ

[(
c
V,f

(i)
u

+ c
A,f

(i)
u

c
V,f

(j)
d

+ c
A,f

(j)
d

)
(pρin + kρ1)

−
(
c
V,f

(j)
d

+ c
A,f

(j)
d

c
V,f

(i)
u

+ c
A,f

(i)
u

)
(pρin + kρ2)

]
(1 − γ5)

+ θµν

mf
(i)
u

[
c
V,f

(j)
d

+ 3c
A,f

(j)
d

]
m
f
(j)
d

[
c
V,f

(i)
u

+ 3c
A,f

(i)
u

]
 (1 − γ5)

−
mf

(j)
d

[
c
V,f

(i)
u

+ 3c
A,f

(i)
u

]
m
f
(i)
u

[
c
V,f

(j)
d

+ 3c
A,f

(j)
d

]
 (1 + γ5)

 . (87)

Similarly, ffWWZ, ffWWγ and ffγWZ can be ex-
tracted from (49) as well. They have no mass dependent
corrections.

6.2 Non-minimal NCSM

Here we give the selected Feynman rules for the non-
minimal NCSM introduced in Sect. 3.2. Observe that the

fermion sector is not affected by the change of the repre-
sentation in the gauge part of the action. Let us define

Θ3((µ, k1), (ν, k2), (ρ, k3))
= −θµν [kρ1 (k2k3) − kρ2(k1k3)]
+ (θk1)

µ [gνρ (k2k3) − kρ2k
ν
3 ]

− (θk1)
ν [gρµ (k2k3) − kρ2k

µ
3 ]

− (θk1)
ρ [gµν (k2k3) − kµ2 k

ν
3 ]

+ (k1θk2)[k
µ
3 g

νρ − kν3g
ρµ]

+ cyclical permutations of (µi, ki) . (88)

We use the simplified notation µ1 ≡ µ, µ2 ≡ ν and µ3 ≡ ρ.
First, we list the Feynman rules for the modified

W+W−γ, W+W−Z and ZZZ vertices already present
in the mNCSM. We have

• W+
ρ (k3)

Aµ(k1)

W−
ν (k2)

Eq. (79) (89)
+ 2 e sin 2θWKWWγ Θ3((µ, k1), (ν, k2), (ρ, k3)) ,

• W+
ρ (k3)

Zµ(k1)

W−
ν (k2)

Eq. (80) (90)
+ 2 e sin 2θWKWWZ Θ3((µ, k1), (ν, k2), (ρ, k3)) ,

• Zρ(k3)

Zµ(k1)

Zν(k2)

Eq. (81) (91)
+ 2e sin 2θWKZZZΘ3((µ, k1), (ν, k2), (ρ, k3)) .

Additionally, we give the new gauge boson vertices γγγ,
Zγγ and ZZγ:

• Aρ(k3)

Aµ(k1)

Aν(k2)

2 e sin 2θWKγγγ Θ3((µ, k1), (ν, k2), (ρ, k3)) , (92)

• Aρ(k3)

Aµ(k1)

Zν(k2)

−2 e sin 2θWKZγγΘ3((µ, k1), (ν, k2), (ρ, k3)) , (93)
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• Zρ(k3)

Aµ(k1)

Zν(k2)

−2 e sin 2θWKZZγ Θ3((µ, k1), (ν, k2), (ρ, k3)) . (94)

The functions K are not independent and they are
defined in (29) and (31).

7 Conclusions

The main purpose of this article is to complete the non-
commutative standard model constructed in [6, 9], and
thus to make it accessible to phenomenological consider-
ations and further research. The NCSM action are given
in terms of physical fields and mass eigenstates. The free-
dom in the choice of traces in kinetic terms for gauge fields
produces two versions of the NCSM, namely the mNCSM
and the nmNCSM. However, such freedom does not affect
the matter sector of the action and the fermion-gauge bo-
son interactions remain the same in both versions of the
NCSM. We have provided an explicit expression for se-
lected vertices of which some already appear in the orig-
inal SM, but in the NCSM they gain θ-dependent cor-
rections, whereas others appear for the first time in the
non-commutative version of the SM. We have presented
a careful discussion of electroweak charged and neutral
currents as well as a derivation of the Higgs and Yukawa
terms of the NCSM action.

Among the novel features in comparison with previ-
ous works [6, 9] are the appearance of additional gauge
boson interaction terms (30) and (61) in the gauge (21)
and in the Higgs (50) parts of the action, and the appear-
ance of mass dependent corrections to the boson–boson
and fermion–boson couplings stemming from the Higgs
and Yukawa parts of the action, respectively. In (76)–(78)
the mass dependent terms stem from the Yukawa inter-
actions (64)–(73), while in (79) and (80) the mass cor-
rections arrise from the θ-expanded Higgs action (61). To
first order in θ, (65) contains coupling of fermions to gauge
bosons that depends on the mass of the fermion involved.
Also the appearance of new terms (61) would certainly
produce important contributions in a number of physical
processes. All the above features are introduced by the
Seiberg–Witten maps.

CP violation induced by space-time non-
commutativity has potential to be a particular sensitive
probe of non-commutativity [33]. The analysis of C, P ,
T properties of the NCSM and the NCGUTs [31] shows
that θ transforms under C, P , T in such a way that it
preserves these discrete symmetries in the action. How-
ever, considering θ as a fixed background (or spectator)
field, there will be spontaneous breaking of CP (relative
to the background), just as one has spontaneous breaking
of Lorentz symmetries in non-commutative theories.
Consequently, non-commutative effects can also mix with
the CKM-matrix CP -violating parameter δ in the spirit

of [33]. Since the fermion sectors of the mNCSM and the
nmNCS are equal, the above conclusion is valid for both
models. It should be noted that in the present work, the
unitary CKM mixing matrix has been considered with
matrix elements not as functions of space-time but as
constants. Furthermore, the θ-expansions of the SW map
and the star product have been worked out only up to
first order.

In conclusion, the thorough analysis of the electroweak
sector considered in this paper facilitates further research
on reliable bounds on non-commutativity from hadronic
and leptonic physics.
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13. J. Trampetić, Acta Phys. Polon. B 33, 4317 (2002) [hep-
ph/0212309]

14. P. Schupp, J. Trampetić, hep-ph/0405163
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